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The dipole moments  o ! eight a f t - u n s a t u r a t e d  aromat ic  and heterocycl ic  aldehydes and ke-  
tones in dioxane solution were measured.  The moments  of the syn and anti conformations 
were calculated by vector-adcUtivity schemes.  The effect of the conformation on the too- 
ment of the C= O group was taken into account. The charge distribution was calculated by 
the P a r i s e r - P a r r - P o p l e  method in o rder  to est imate the polarizat ion of the C = C bond. 

Conjugation of the double bonds through a single bond in a f t - u n s a t u r a t e d  carbonyl compounds leads 
to a considerable increase  in the double-bond charac te r  of the single bond and an increase  of 10-15 kca l /  
mole in the energy ba r r i e r  to rotation relat ive to the single bond. This resul ts  in the development of s -  
t r a n s - c i s  i s omer s  [2] relative to the single bond; these i somers  can be readily identified by means of, for 
example, IR spec t roscopy [3, 4]. The position of the s - t r ans  ~ s -c i s  conformational  equilibrium for a r o -  
matic a f t - u n s a t u r a t e d  ketones depends on the "volume" of the substituent (R) attached to the carbon atom 
of the carbonyl group [1]. If  R=H the molecule exists mainly in the s - t r ans  conformation. When R=CH3, 
C2H5, or iso-C3HT, the IR  spect rum shows a doublet of bands of carbonyl absorption caused by the exis-  
tence of the s-trans~-~-s-cis conformational equilibrium in these compounds. Moreover ,  the conformational  
equilibrium is shifted to favor the s -e i s  i somer  on passing to a bulkier substituent. When R=te r t -bu ty l ,  
the molecule exists in the s -c i s  conformation. 
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Ar = aryl or hetaryl R= alkyl or hydrogen 

Since s - t r a n s - c i s  i somers  differ appreciably with respec t  to their  polar  proper t ies ,  the method of 
dipole moments  has frequently been used to study their  s t ruc tures  [5-8]. If the magnitude of the po la r iza -  

* Communication II of the ser ies  "a , f l -Unsaturated Carbonyl Compounds and Their  Derivat ives ."  See [1] 
for communication I. 

TABLE 1. Dipole Moments and Conformer  Ratios of a , f i -Unsaturated 
Aromatic  Carbonyl Compounds 

Compound 

C~HsCH=CHCHO 
C6HsCH=CHCOCHs 
C6HsCH=CHCOCH2CHa 
C6HsCH=CHCOCH (CH3) 2 
C6HsCH=CHCOC (CH3) 3 

/lexp, D 

3,711G 
3,31 n 
3,13 
3,06 
2,8711 

Conformer present [1 ], % 
s-trans 1 s-cis 

b 

100 N 0  
57 43 
31 69 
14 86 
0 100 
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tion of the C = C bond in the C = C -  C = O chromophore  was d is regarded in calculations made f rom v e c t o r -  
additivity schemes ,  the s - c i s  and s - t r an s  conformations of an unsaturated carbonyl compound could not be 
differentiated [6-8]. On the other hand, the conformations of several  ~,f i -unsaturated carbonyl  compounds 
could be es tabl ished when the polar izat ion of the C = C bond was taken into account by means of bond mo-  
ments  [5]. 

Taking the polarization of the C= C bond into account by this or another method is of fundamental 

significance in calculations of s-cis-trans conformations. The directions of the moments of the C = C and 

C = O bonds coincide in the s-trans conformation, while in the s-cis conformation the angle between the 

moments, which are directed to different sides, is 120 ~ All other conditions being equal, the s-trans iso- 

mer will have a larger dipole moment than the s-cis isomer. 

1 I 
C C 

s-trans s-CiS 

The s - c i s  double bond will have a l a rge r  induced dipole than the s - t r ans  double bond because of the 
direct  effect of the field of the carbonyl group. According to the method in [9], the dipole induction of the 
carbonyt  group on the s -c i s  C = C bond was es t imated to be four t imes that on the s - t r ans  C = C bond [3]. 
The charge distribution on the atoms, found with the v approximation of the P a r i s e r - P a r r - P o p l e  method, 
also conf i rms that the dipole of the carbonyl group in the s - c i s  conformation polar izes  the double bond 
more  s t rongly than in the s - t r ans  conformation.  
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The dipole moment  of cinnamaldehyde is 3.71 D. Benzalacetone has a lower dipole moment  of 3.31 
D. Replacement  of the methyl group by ethyl and isopropyl groups leads to a fur ther  decrease  in the di- 
pole moment  (Table 1), while ter t -butyl  s tyryl  ketone has the minimum dipole moment  (2.87 D). The dif- 
ference  between the moment  of acetone (2.71 D [10]) and pinacolone (2.79 D [10]) is 0.08 D, f rom which it 
can be concluded that the difference (0.44 D) between the moments  of benzalacetone and tor t -butyl  s tyryl  
ketone is due to the different posit ion of the s - t r a n s ~  s - c i s  conformational equilibrium of each of these 
compounds [11]. F r o m  these data it can be approximately es t imated that the s -c i s  i s o m e r  of benzalace-  
tone has a moment  that is 1 D lower than that of the s - t r ans  i somer .  

According to the PMR data, the substituents at tached to the double bond of f i - (a- thienyl)acrole in  (I) 
and f i - (a - fury l )ac ro le in  (II) are  t rans  oriented, which is indicated by the s p i n - s p i n  coupling constant of 
the olefinic protons:  for I, 6 6.43 (a-H),  7.53 ppm {fl-H), J=16  Hz; for ]I, 6 6.57 (a-H),  7.20 ppm (fl-H), 
J= 16 Hz. The absorpt ion bands of the C =O group in the IR spec t ra  of I and II are  more  intense than those 
of the C=C bond (for I, vC= O 1688 cm -1, ~C=C 1619 cm -1, and the intensity ratio is 2.0; for II, v C =O 
1688 cm -1, ~C=C 1634 cm -1, and the intensity rat io is 2.5). This sor t  of intensity rat io is charac te r i s t i c  
for the s - t r an s  conformers  of a f t - u n s a t u r a t e d  carbonyl compounds [3, 4]. In addition to the bands at 1619 
and 1634 cm -I  of the C = C s t re tching vibrations of the s - t r ans  conformer ,  the spec t ra  of I and II contain 
bands at 1595 and 1609 cm -i,  which, in analogy with the band at 1611 cm -1 of cinnamaldehyde [1], can be 
assigned to the p resence  of the s -c i s  i s o m e r  of I and II in solution. 

Unsymmetr ica l  thiophene and furan substituents presuppose yet another form of i somer i sm,  which 
we have a rb i t r a r i l y  designated as syn and anti (Table 2). We used a vector  scheme to calculate the dipole 
moments  of the planar  syn-  and a n t i - t r a n s - s - t r a n s  conformations of I and II. In view of its low concen-  
tration,  the admixed s -c i s  i somer  was not taken into account in the calculations. The moment  of u - s u b -  
sti tuted thiophene (1.01 D) was calculated from the moment  of thiophene (0.54 D [12]). This moment  fo rms  
an angle of 40 ~ with the axis of s y m m e t r y  of the thiophene ring. The moment  of a - subs t i tu ted  furan (0.98 
D), which fo rms  an angle of 42 ~ with the axis of s y m m e t r y  of the furan ring, was calculated f rom the mo-  
ment of furan (0.71 D [13]). In the calculations,  the furan and thiophene molecules  were considered to be 
regular  pentagons, and the moments  (0.71 and 0.54 D, respectively) were directed from the center  of the 
r ing toward the heteroatom [14, 15]. A moment  of 2.89 D, calculated f rom the t r a n s - s - t r a n s  conformation 
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TABLE 2. Dipole Moments  and Conformat ions  of a ,p - 'Unsa tu ra ted  
Heterocycl ic  Carbonyl  Compounds 

~cal_ o D 

H 0 I~ 

C~ x "exp' . .x--  I \ 
pound D ~ [~]--c\n . 17~x ~__cC~ CN. 

syn anti I . . . . . . .  t 

4,00 
4,44 

3,50 
4,09 

--c~ %0 
H 

syn 

2,61 
3,27 

H\ /C(CH3) 3 

anti 

llI S 3,40 3,70 2,73 
IV 0 2,99 3,42 2,59 

V 
VI 

n \ /C6t l  ~ 

syn 

H\ /C6H ~ 

anti 

3,27 
3,36 

3,59 
3,55 

2,69 
2,73 

of cinnamaldehyde (3.71 D [16]) and a Csp2- -H momen t  of 0.7 D, was se lec ted  for  the carbonyl  group. In 
compar ing  the exper imen ta l  values  of the dipole momen t s  with the momen t s  calcula ted for  the syn and 
anti conformat ions  of I and II,  one should p r e f e r  the syn conformat ion  in both ca se s  (Table 2). 

According to the PMR data, 1 - ( a - t h i e n y l ) - 3 - t e r t - b u t y l - l - p r o p e n - 3 - o n e  (I1-i) and 1 - ( a - f u r y l ) - 3 - t e r t -  
b u t y l - l - p r o p e n - 3 - o n e  (IV) have a t r ans  or ienta t ion of the subst i tuents  at tached to the double bond: for  ]II, 
6 6.83 (a -H) ,  7.70 ppm (P-H),  and J=15 Hz; for  IV, 6 7.12 (a -H) ,  7.36 ppm (P-H),  and J=16  Hz. The IR 
s p e c t r a  of I~  and IV inthe region of the s t re tching v ibra t ions  of the C = O and C = C bonds a r e  cha r ac t e r i s t i c  
for s - c i s - a , p - u n s a t u r a t e d  ketones:  the s t re tch ing  v ibra t ions  of the C = C bonds su rpa s s  the C = O s t r e t e h i n g  
v ibra t ions  in in tensi ty  (for III,  uC= O 1685 cm -i ,  v c =  C 1595 cm -1, and the in tens i ty  ra t io  is  0.5; for  IV, 
PC = O 1684 cm -1, PC = C 1614 cm -1, and the in tensi ty  rat io  is  0.3). The dipole momen t s  of the syn-  and 
a n t i - t r a n s - s - c i s  conformat ions  (Table 2) were  ca lcula ted  for  ]II and IV using the above-ment ioned  m o -  
men t s  of the furan and thiophene subst i tuents ,  a carbonyl-group moment  of 2.0 D, ca lcula ted  f rom the m o -  
ment  (2.87 D) of t r a n s - s - c i s - b e n z a l p i n a c o l o n e  [1t], and a (CH3)3C-" C momen t  of 1.0 D. 

The dipole momen t s  of the syn and anti conformat ions  were  s i m i l a r l y  calcula ted for 1 - ( a - th i eny l ) -  
3 - p h e n y l - l - p r o p e n - 3 - o n e  (V) and 1 - ( a - f u r y l ) - 3 - p h e n y l - l - p r o p e n - 3 - o n e  (VI), which, according  to the I R -  
spec t roscopic  data, ex is t  in the t r a n s - s - c i s  conformat ion  [17, 18]. The carbonyl-group momen t  for the 
calculat ion of these  compounds was ca lcula ted  f rom the dipole moment  of t r a n s - s - c i s - b e n z a l a c e t o p h e n o n e  
(3.05 D [16]) and was found to be 2.35 D. The phenyl-group momen t  was se lec ted  as  0.7 D. 

The exper imenta l  values  of the dipole momen t s  for ketones  1]I-VI a r e  in t e rmed ia te  between the ca l -  
culated values  of the syn and anti conformat ions .  The expression/~2= (l_x)/~12+x/~22 gives the following 
mole  f rac t ions  of the syn confo rmer :  0.7 III ,  0.5 IV, 0.6 V, and 0.7 VI. The fact  that  the syn conformat ion 
is  p r e f e r a b l e  both for  the s - t r a n s  (I-H) and the s - e i s  (JTr-VI) carbonyl  compounds can be explained by the 
d ipo l e -d ipo l e  in te rac t ion  of the he te ro r ing  and the carbonyl  group. 

EXPERIMENTAL 

f l - ( a -Th ieny l )ac ro le in  (I) [bp 106-108 ~ (4 mm)] was obtained by the condensation of a - f o r m y l t h i o -  
phene and acetaldehyde via the method in [19]. p - ( a - F u r y l ) a c r o l e i n  (II) [mp 49 ~ ( f rom hexane)] was ob- 
tained by the condensation of fur fura l  and aceta ldehyde via  the method in [20]. 1 - ( a - T h i e n y l ) - 3 - p h e n y l - 1 -  
p ropen -3 -one  (V) [mp 58 ~ ( f rom ethanol)] and 1 - ( a - f u r y l ) - 3 - p h e n y l - l - p r o p e n - 3 - o n e  (VI) Imp 26 ~ ( f rom 
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hexane)] were synthesized by the condensation of ff-formylthiophene and furfural  with acetophenone via the 
method in [17, 20]. The synthesis  of ethyl s tyryl  ketone and isopropyl s tyryl  ketone was previously  de- 
scr ibed in [1]. 

1 - (c~-Thienyl ) -3- te r t -bu ty l - l -p ropen-3-one  (HI). A 0.22-mole sample of c~-formylthiophene and 
0.22 mole of pinaeolone were mixed in 50 rnl of ethanol in the p resence  of 1 rnl of 20% aqueous KOH solu-  
tjon. The mixture was held at 20 ~ for  24 h and was then poured into 150 ml of water.  The aqueous mix-  
ture was extracted with ether,  and the e ther  layer  was dried. The ether  was removed, and the residue was 
vacuum-dist i l led to give 89% of a product  with bp 133 ~ (4 rnrn) and mp 112 ~ (from hexane). Found: C 67.9; 
H 7.2%. ClIH14OS. CMeulated: C 67.9; H 7.3%. 

1 - (c~-Fury l ) -3 - t e r t -bu ty l - l -p ropen-3 -one  (IV). This compound was s imi la r ly  obtained in 91% yield 
and had bp 122 ~ (3 rnrn). Found: C 74.2; H 7.9~0. CllHi402. Calculated: C 74.1; H 7.9%. 

The dielectr ic  constants were  measured  on 0.1-0.05 M solutions in dioxane by the no-beat  method 
with an IDM-i device. The dioxane was purified by the method ,in [2i]. The experimental  dipole 
moments  were calculated by the method in [22]. 

The IR spec t ra  of CC14 solutions (in a cuvette with a layer  thickness of 0.4 rnrn) were recorded  with 
a UR-20 spec t rometer .  The rat io of the a reas  of the v C = O and u C = C bands was calculated af ter  the c o r -  
responding peaks were cut out and weighed. 

The PlVfR spec t ra  were recorded  with a Varian HA-100 spec t rometer ;  0.5 M solutions in CC14 were 
investigated with te t ramethyls i Iane  as the internal  standard. 

The theoret ical  quantum-chemical  calculations were Mndly given to us by V. V. Zverev, to whom we 
express  our  gratitude. 
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